بطاقة الأستاذ ع م1

① التحولات السريعة و التحولات البطيئة

مؤشر الكفاءة:

يصنّف التحولات الكيميائية إلى: سريعة (لحظية)، بطيئة أو بطيئة جدا حسب مدّتها الزمنية.

الوسائل و المحاليل المستعملة:

- . (0.5mol/L) محلول حمض الأوكساليك
- . $(1.0 \times 10^{-2} mol/L)$ (mohr) محلول موهر
- محلول برمنغنات البوتاسيوم (1,0×10 $^{-3}$ mol/L).
- . ($0,2mo\ell/L$) محلول ثيوكبريتات الصوديوم
- . (1,0 $imes 10^{-2} mo\ell/L$) محلول يود البوتاسيوم
 - . (0,1 $mo\ell/L$) محلول نترات الرصاص
 - . ($1mo\ell/L$) محلول حمض الكبريت –

- مخبارین مدرجین (50*mL*)

- مخبار مدرج (10mL).
 - مخلاط مغناطيسي.
 - أنابيب إختبار.
- كأسى بيشر (100mL).

التجربة 1:

نسكب في كأس بيشر 20mL من محلول موهر (محلول يحتوي على شوارد الحديد الثنائي 20mL نسكب في كأس بيشر 5mL من حمض الكبريت $(2H^+ + SO_4^{2-})$ ، نخلط الوسط التفاعلي بواسطة المخلاط المغناطيسي حتى نحصل على محلول متجانس ثم نضيف له دفعة واحدة 5mL من برمنغنات البوتاسيوم $(K^+ + MnO_4^-)_{(aq)}$.

 $(Fe^{3+}/Fe^{2+})_{(aq)}$ ، $(MnO_{4(aq)}^{-}/Mn_{(aq)}^{2+})$: هما الثنائيتان المشاركتان في التفاعل هما توضيحيا.

من محلول برمنغنات البوتاسيوم 5mL $({
m K}^+, {
m MnO}_4^{ extsf{-}})_{({
m aq})}$

من محلول مو هر 20mL من محلول حمض 5mL الكبريت $(2H^+ + SO_4^{2-})_{(aq)}$

2- هل التحول الحادث سريع أم بطئ ؟

يكون إختفاء اللون البنفسجي لمحلول برمنغنات البوتاسيوم <u>لحظيا</u> أي لحظة تلامس محلول برمنغنات البوتاسيوم و محلول موهر إذًا التحول الحادث هو <u>تحول سريع</u>.

3- بيّن كيف يمكن متابعة التحول الحادث

- تتم متابعة هذا التحول بمتابعة اختفاء شاردة البرمنغنات $MnO_{4(aq)}^{-}$ البنفسجية اللون من الوسط التفاعلي.

4- أكتب معادلة التفاعل المنمذج للتحول الحادث.

$$Fe_{aa}^{2+} = Fe_{aa}^{3+} + 1e^{-}$$
 : المعادلة النصفية الإلكترونية للأكسدة : **

* المعادلة النصفية الإلكترونية للإرجاع:

(×1)
$$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} = Mn_{(aq)}^{2+}) + 4H_{2}O_{(\ell)}$$

* معادلة الأكسدة - ارجاع:

$$MnO_{4(aq)}^{-} + 5Fe_{aq}^{2+} + 8H_{(aq)}^{+} = Mn_{(aq)}^{2+}) + 5Fe_{aq}^{3+} + 4H_2O_{(\ell)}$$

التجربة 2:

نسكب في كأس بيشر 20mL من حمض الأوكساليك ، $(H_2C_2O_4)_{(aq)}$ ، ونسكب في كأس بيشر 20mL من حمض الكبريت، $(2H^+ + SO_4^{2^-})_{(aq)}$ من نضيف له دفعة واحدة 5mL من برمنغنات البوتاسيوم $(K^+ + MnO_4^-)_{(aq)}$.

 $(CO_{2(aq)}/H_2C_2O_{4(aq)})$ ، $(MnO_{4(aq)}^-/Mn_{(aq)}^{2+})$: الثنائياتان المشاركتان في التفاعل هما -1 النجز ، بإستعمال الألوان ، رسما توضيحيا .

من محلول حمض الأوكساليك $({
m H}_2{
m C}_2{
m O}_4)_{
m (aq)}$ من محلول حمض الكبريت، 5mL - $(2{
m H}^+ + {
m SO}_4^{2^-})_{
m (aq)}$

من محلول بر منغنات ملوناسيوم $(K^+ + MnO_4^-)_{(aq)}$

تطور الوسط التفاعلي بمرور الزمن

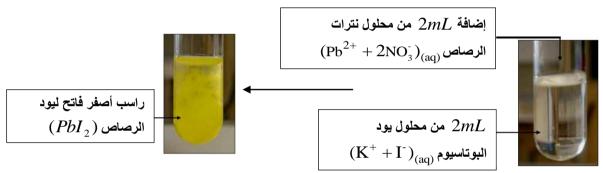
- 2- هل التحول الحادث سريع أم بطئ؟
- نلاحظ إختفاء اللون البنفسجي (العائد لشاردة $(MnO_{4(aq)}^{-})$ لمحلول برمنغنات البوتاسيوم تدريجيا مع مرور الزمن إذا التحول الحادث هو تحول بطيء
 - 3 بيّن كيف يمكن متابعة التحول الحادث
- تتم متابعة هذا التحول بمتابعة اختفاء شاردة البرمنغنات $MnO_{4(aq)}^{-}$ البنفسجية اللون من الوسط التفاعلي. -4

* المعادلة النصفية الإلكترونية للأكسدة:

$$(\times 5)$$
 $H_2C_2O_{4(aq)} = 2CO_{2(g)} + 2H_{aq}^+ + 2e^-$

*المعادلة النصفية الإلكترونية للإرجاع:

(×2)
$$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} = Mn_{(aq)}^{2+}) + 4H_{2}O_{(\ell)}$$


* معادلة الأكسدة - ارجاع:

$$2MnO_{4(aq)}^{-} + 5H_2C_2O_{4(aq)} + 6H_{(aq)}^{+} = 2Mn_{(aq)}^{2+}) + 10CO_{2(aq)} + 8H_2O_{(\ell)}$$

التجربة 3:

نضع في أنبوب إختبار 2mL من محلول يود البوتاسيوم $(K^+ + I^-)_{(aq)}$ ثم نضيف له 2mL من محلول نترات الرصاص $(Pb^{2+} + 2NO_3^-)_{aq}$

1- أنجز، بإستعمال الألوان، رسما توضيحيا.

- 2- هل التحول الحادث سريع أم بطئ؟
- نلاحظ تشكل راسب أصفر فاتح لحظة تلامس المحلولين إذن التحول الحادث هو تحول سريع.
 - 3 بيّن كيف يمكن متابعة التحول الحادث
 - تتم متابعة هذا التحول بمتابعة ظهور نوع كيميائي (راسب أصفر).
 - 4- أكتب معادلة التفاعل المنمذج للتحول الحادث:

$$2(K^{+} + \Gamma)_{(aq)} + (Pb^{2+} + 2NO_{3}^{-})_{(aq)} = PbI_{2(s)} + 2(K^{+} + NO_{3}^{-})_{(aq)}$$

التجربة4:

نسكب في كأس بيشر 10mL من محلول ثيوكبريتات الصوديوم $(2Na^+ + S_2O_3^{2^-})_{(aq)}$ و 10mL من محلول حمض كلور الهيدروجين $(H^+ + C\ell^-)_{(aq)}$.

. (SO_2 / $S_2O_3^{2^-}$) (aq) ، ($S_2O_{3(aq)}^{2^-}$ / $S_{(s)}$) الثنائيتان المشاركتان في التفاعل هما

1- أنجز ، بإستعمال الألوان، رسما توضيحيا.

من محلول حمض 10mL الكبريت $(\mathrm{H}^+ + \mathrm{C}\ell^-)_{(\mathrm{aq})}$

من محلول ثيوكبريتات 10mL الصوديوم $(2Na^+ + S_2O_3^{2^-})_{(aq)}$

تطور الوسط التفاعلي بمرور الزمن

- 2- هل التحول الحادث سريع أم بطئ؟
- نلاحظ أن المزيج المتفاعل يتلون تدريجيا بمرور الزمن و ببطىء بلون مصفر وحليبي ،إن هذا اللون يعود إلى تشكل الكبريت الصلب $(S_{(s)})$ الذي يبقى عالقا بالمزيج. إذن هذا التحول هو تحول بطىء .
 - 3- بيّن كيف يمكن متابعة التحول الحادث .
 - . $(S_{(s)})$ الكبريت الصلب تتم متابعة هذا التحول بمتابعة تشكل
 - 4- أكتب معادلة التفاعل المنمذج للتحول الحادث:

$$S_2 O_{3(aq)}^{2-} + H_2 O_{(\ell)} = 2 SO_{2(g)} + 2 H_{aq}^+ + 4 e^-$$
 المعادلة النصفية الإلكترونية للأكسدة:

$$S_2\,O_{3(aq)}^{2\text{-}}+6H_{aq}^++4\,e^-=2\,S_{(s)}+3\,H_2O_{\,\,(\ell)}$$
 المعادلة النصفية الإلكترونية للإرجاع:

$$S_2\,O_{3(aq)}^{2\text{-}} + 2H_{aq}^+ = S + SO_{2(g)} + H_2O_{(\ell)}$$
 - المعادلة الأكسدة – ارجاع: – المعادلة الأكسدة – ارجاع:

5- صنف التفاعلات السابقة إلى سريعة و بطيئة.

- جدول ملخص للتصنيف:

التجربة	1)	2	3	4
سريع	X		X	
بطئ		X		X

- 6 متى نقول عن تحول كيميائي أنه سريع و متى نقول عنه أنه بطىء 9
- نقول عن تحول كيميائي أنه سريع إذا كان ظهور أو اختفاء نوع كيميائي لحظة تلامس المتفاعلات.
- نقول عن تحول كيميائي أنه بطىء إذا كان ظهور أو اختفاء نوع كيميائي تدريجيا، أي بعد مرور مدة زمنية على تلامس المتفاعلات.