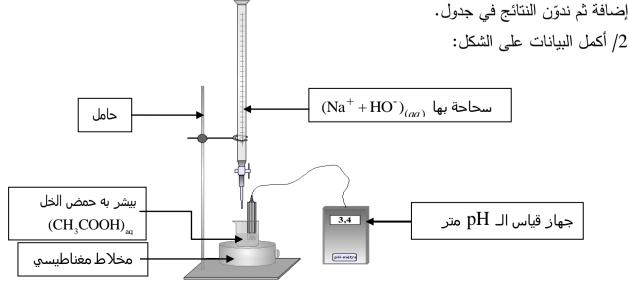
بطاقة الأستاذ ع م 12

④ المعايرة الـ pH مترية

مؤشرات الكفاءة: - يستخدم جهاز اله pH متر ، الزجاجيات المناسبة لتحقيق المعايرة.

- استعمال منحنى المعايرة $pH=f(V_h)$ من أجل تعيين التركيز المولى لمحلول.
 - يتعرّف على الطرق الثلاث لتحديد نقطة التكافؤ أثناء المعايرة الـ pH مترية.


تمهيد: في إطار مراقبة جودة المنتوج و محاربة الغش نستعمل طريقة المعايرة و للتعرف أكثر على هذه الطريقة نقترح في هذه التجربة معايرة محلول حمض الخل بمحلول الصود.


الوسائل و المحاليل المستعملة:

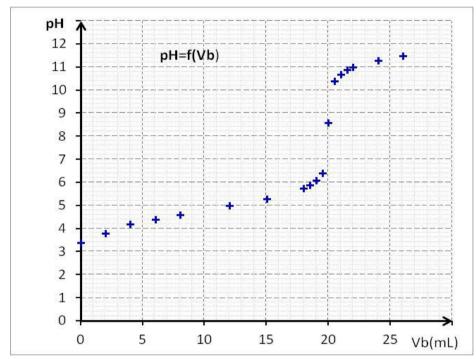
- $(Na^+ + HO^-)_{(aq)}$ محلول هيدروكسيد الصوديوم - ماصة عباربة 1mL.
- \cdot C_b = 1,0.10⁻¹ mo ℓ /L تركيزه المولى - حوجلة عيارية 100mL.
 - مخلاط مغناطیسی. - قارورة زجاجية تحتوى على حمض الخل (CH₂COOH)
 - ببشر سعته 100mL. مجهول التركيز.
 - سحاحة مدرجة. - محاليل معلومة الـ pH
 - (pH = 10, pH = 7, pH = 4). متر pH متر
 - عدة كواشف ملونة: الهيليانتين ، فينول فتالين. أزرق بروموتيمول.

خطوات العمل:

- 1/ أذكر البروتوكول التجريبي لمعايرة محلول حمض الخل بمحلول الصود.
 - أ- نضبط جهاز الـ pH متر بواسطة محاليل معلومة الـ pH.
 - ب- نملأ السحاحة بمحلول ماءات الصوديوم ونضبطها عند التدريجة 0.
- . $(CH_3COOH)_{aq}$ من حمض الخل 20mL ج- نضع في بيشر حجما
- د- نقطّر تدریجیا محلول هیدروکسید الصودیوم $(Na^+ + HO^-)_{aq}$ في البیشر و نسجل قیمة الـ pH بعد کل

علوم تجريبية / رياضيات / تقني رياضي

دليل الأعمال المخبرية للسنة الثالثة ثانوي


3- إملأ الجدول التالي:

V _b (mL)	0	2,0	4,0	6,0	8,0	12,0	15,0	18,0	18,5
рН	3,4	3,8	4,2	4,4	4,6	5,0	5,3	5,8	5,9
V _b (mL)	19,0	19,5	20,0	20,5	21,0	21,5	22,0	23,0	
рН	6,1					10,9			

4- أكتب معادلة التفاعل الحادث:

$$CH_3COOH_{(aq)} + HO_{(aq)}^{-} = CH_3COO_{(aq)}^{-} + H_2O_{(\ell)}$$

على ورق مليمتري باختيار سلم رسم مناسب. $pH=f(V_b)$ على ورق مليمتري باختيار

6- أ/ اشرح أجزاء هذا المنحنى مبينا في كل جزء المتفاعل المحد.

يتكون المنحنى من ثلاث أجزاء:

الجزء الأوّل: $0 < V_b < 19,5 m$ يختفي كليا فور صبه في المحلول وعليه + O متفاعل محد .

الجزء الثاني: PH وهذا الجزء يشمل نقطة PH نلاحظ خلاله تغيرا مفاجئا للPH وهذا الجزء يشمل نقطة التكافؤ. (في هذه الحالة المزيج ستكيوميتري)

الجزء الثالث: $V_b > 20,5 \text{mL}$ يتغير خلاله pH قليلا ، و يتناهى إلى قيمة حدية .

. CH3COOH متفاعل محد

ب/ استنتج من ذلك تعريف نقطة التكافؤ.

نقطة التكافؤ هي النقطة:

- التي يحدث عندها تغير المتفاعل المُحد.
- $n(HO^-) = n(CH_3COOH)$ و الأساس متساويتان أي الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمض و الأساس متساويتان أي المحمد عندها كمية مادة الحمد عندها كمية مادة الحمد عندها كمية المحمد عندها كم

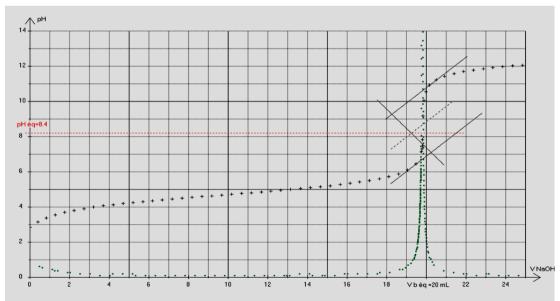
7- حدّد نقطة التكافؤ بيانيا موضحا الطريقة المتبعة ، واستنتج طبيعة المحلول عندئذ.

أ- طريقة المماسين (أو الدائرتين):

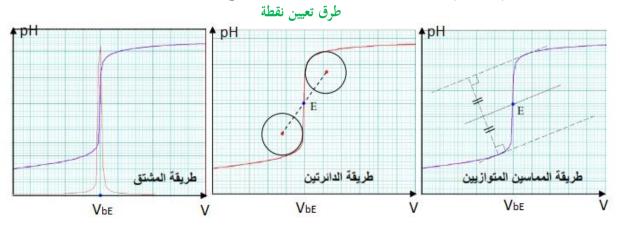
– في نقطتي الانعطاف للبيان $f(V_b)=H=f(v_b)$ أرسم مماسين متوازيين.

- أرسم مستقيما ثالثا يوازيهما و يكون متناظر بالنسبة لهما.

 $V_{bE} = 20 ext{mL}$: بالإسقاط نجد إحداثياتها: E نقطة التكافؤ E ، بالإسقاط نجد إحداثياتها:


 $pH_{E} = 8,4$

ب - طريقة المشتقة:


يمكن تحديد نقطة التكافؤ باستعمال طريقة المشتقة بتمثيل المنحنى $\frac{\mathrm{dpH}}{\mathrm{dV_b}} = \mathrm{g(V_b)}$ إعتمادا على برنامج

$$\frac{\mathrm{dpH}_i}{\mathrm{dV_b}} = \frac{pH_{i+1} - pH_{i-1}}{V_{b(i+1)} - V_{b(i-1)}}$$
 : عن يتطبيق العلاقة Excel

فنحصل على المنحنى التالي:

ثم نسقط القيمة القصوى (أو الدنيا) على المنحنى $pH=f(V_b)$ ونستنتج نقطة التكافؤ.

علوم تجريبية / رياضيات / تقني رياضي

دليل الأعمال المخبرية للسنة الثالثة ثانوي

ج- باستعمال الكواشف الملونة (المعايرة اللونية): (مجال الخطأ فيها كبير لأنّ الدراسة كيفية)

الكواشف الملونة عبارة عن محاليل حمضية أو أساسية يتغير لونها من وسط إلى آخر حسب مجال تغلب الصفة الحمضية HI_n أو الصفة الأساسية I_n .

- المحلول الناتج عند التكافؤ يكون أساسيا.

 $V_{
m bE}$ ، $V_{
m b}$ ، $V_{
m a}$ ، $V_{
m a}$ ، بين جدولا لتقدم التفاعل عند نقطة التكافؤ واستنتج العلاقة بين جدولا لتقدم التفاعل عند نقطة التكافؤ واستنتج العلاقة بين

المعادلة	CH ₃ COO	$H_{(aq)} + OH_{(aq)}$	$= CH_3COO_{(a)}$	q) + H ₂ O _(ℓ)	
الحالة الإبتدائية	C_aV_a	C_bV_{bE}	0	بزيادة	
حالة التكافؤ	$C_a V_a - x_E$	$C_b V_b - x_E$	x _E	بزيادة	

 $V_{
m bE}$ ، $C_{
m b}$ ، $V_{
m a}$ ، $C_{
m a}$ ، بين -

$$\begin{array}{l} C_b V_{bE} - x_E = 0 \longrightarrow x_E = C_b V_{bE} \\ C_a V_a - x_E = 0 \longrightarrow x_E = C_a V_a \end{array} \right\} \longrightarrow C_a V_a = C_b V_{bE}$$
 عند التكافؤ :

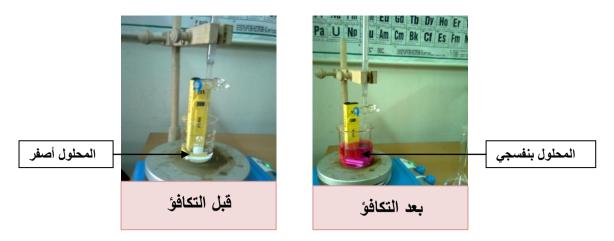
$$C_a = \frac{C_b.V_{bE}}{V_a} = \frac{10^{-1}.20}{20} = 1,0.10^{-1} \text{mol.L}^{-1}$$
 التركيز المولي لمحلول حمض الخل

 $V_{
m b} = rac{
m V_{
m bE}}{2}$. $V_{
m b} = rac{
m V_{
m bE}}{2}$. $V_{
m b} = 1$. $V_{
m b} = 1$. $V_{
m b} = 1$

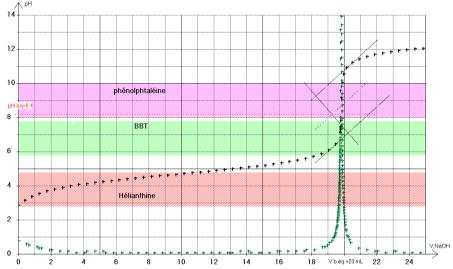
– حدد من البيان قيمة الـ pH الموافقة . ماذا تمثل?

 ${
m CH_3COOH\,/\,CH_3COO}^{ ext{-}}$ من البيان: ${
m pH}=4.8$ و هي توافق قيمة الـ ${
m pK}_a$ للثنائية

10- أحسب ثابت التوازن $\, \, K \,$ لهذا التحول الحادث . ماذا تستتج؟


$$K = \frac{[CH_3COO^-]_f}{[CH_3COOH]_f[OH^-]_f}$$
 عبارة ثابت التوازن:

$$K = \frac{[CH_3COO^-]_f}{[CH_3COOH]_f[OH^-]_f} \cdot \frac{[H_3O^+]_f}{[H_3O^+]_f} = \frac{K_a}{K_e} = \frac{10^{-pK_a}}{10^{-pK_e}} = 10^{pK_e-pK_a} = 10^{14-4.8} = 1,6.10^9$$


- بما أن $\, {
m K} \! > \! 10^4 \,$ يمكن اعتبار تفاعل المعايرة الحادث تام.

11- في غياب جهاز الـ pH متر، ما هو الكاشف الملون المناسب لهذه المعايرة من بين الكواشف التالية؟

الفينول فتالين		أزرق البروموتيمول		الهليانتين		الكاشف
وسط قاعدي	وسط حمضي	وسط قاعدي	وسط حمضي	وسط قاعدي	وسط حمضي	لون الكاشف
		. f	, f	. f		
بنفسجي	شفا ف	أزرق	أصفر	أصفر	ور د ي	
8,2-10,0		6,0-7,6		3,1-4,4		مجال تغير اللون (تقريبا)

حسب الجدول الكاشف المناسب لهذه المعايرة هو الفينول فتالين لأن $pH_{\rm E}$ لهذه المعايرة ينتمي إلى مجال تغيره اللوني.

ملاحظة:

للتحقق من النتائج السابقة يمكن استعمال برنامج dosage.exe أو