بطاقة الأستاذ ع م14

القانون الثاني لنيوتن

مؤشرات الكفاءة:

- يعتمد التلميذ على التصوير المتعاقب لتحديد السرعة و التسارع لمركز عطالة جملة و تمثيل شعاعيهما .

مثل شعاع التسارع \vec{a} لمركز عطالة جملة في لحظة معينة ويتأكد من القانون الثاني لنيوتن، أي يتحقق -

$$\sum \overline{F_{ext}} = m \overline{a}$$
 :من العلاقة

$$m=228g$$
 حرية كتلتها $-$ كرية كتلتها المحاد $-$ المبكة بيانية ملصقة على لوحة ذات أبعاد $-$ المبكة بيانية ملصقة على المحاد المح

- خيط مطاطي طوله الأصلي :
$$\ell_0 = 20$$
 - مسمار و آلة تصوير فيديو.

طريقة العمل (دراسة وثيقة):

- نثبت خيط مطاطى بواسطة مسمار على شبكة شاقولية ، يبعد عن حافتها العلوية بـ 17Cm .

- نسحب كرية مثبتة في النهاية السفلي للخيط المطاطي حسب ما تبينه الوثيقة المرفقة ثم نتركها لحالها.

- عن طريق التصوير المتعاقب سجلت المواضع المتتالية للكرية حيث:

و تم الحصول على الوثيقة المرفقة. $au=0.1\mathrm{s}$

1- استخرج سلم الرسم من الوثيقة.

$$x = 5,7Cm$$
 ومنه:
$$\begin{cases} 3Cm \to 17Cm \\ 1Cm \to x \end{cases}$$

 M_{11} , M_{9} , M_{8} , M_{6} , M_{4} , M_{2} :حسب شدة السرعة اللحظية في المواضع -2 ثم مثلها باستعمال سلم مناسب.

$$V_{2} = \frac{M_{1}M_{3}}{2\tau} = \frac{7 \times 5, 7 \times 10^{-2}}{2 \times 0, 1} = 1,92 \text{m.s}^{-1}$$

$$V_{4} = \frac{M_{3}M_{5}}{2\tau} = \frac{7,8 \times 5, 7 \times 10^{-2}}{2 \times 0, 1} = 2,22 \text{m.s}^{-1}$$

$$V_{6} = \frac{M_{5}M_{7}}{2\tau} = \frac{5,7 \times 5, 7 \times 10^{-2}}{2 \times 0, 1} = 1,62 \text{m.s}^{-1}$$

$$V_{8} = \frac{M_{7}M_{9}}{2\tau} = \frac{5,2 \times 5, 7 \times 10^{-2}}{2 \times 0, 1} = 1,48 \text{m.s}^{-1}$$

$$V_{9} = \frac{M_{8}M_{10}}{2\tau} = \frac{6,75 \times 5, 7 \times 10^{-2}}{2 \times 0, 1} = 1,92 \text{m.s}^{-1}$$

$$V_{11} = \frac{M_{10}M_{12}}{2\tau} = \frac{8,0 \times 5, 7 \times 10^{-2}}{2 \times 0, 1} = 2,28 \text{m.s}^{-1}$$

 $1Cm \rightarrow 1m/S$: سلم رسم لأشعة السرعة

التالية: M_{10} , M_{7} , M_{3} التالية: التسارع في المواضع M_{10} , M_{7} , M_{3}

أ- أرسم أولا أشعة تغير السرعة $\overline{\Delta V}$ في المواضع السابقة ثم استنتج طويلة كل منها.

$$\Delta V_3 = 1,4 \times 1 = 1,4 m s^{-1}$$

 $\Delta V_7 = 2 \times 1 = 2,1 m . s^{-1}$
 $\Delta V_{10} = 0,7 \times 1 = 0,7 m . s^{-1}$

$$M_{10}$$
 , M_{7} , M_{3} المواضع في المواضع ، $a_{i}=rac{\Delta V_{i}}{2 au}$ باستعمال العلاقة $a_{i}=rac{\Delta V_{i}}{2 au}$

$$a_3 = \frac{\Delta V_3}{2\tau} = \frac{1,4}{0,2} = 7m \, s^{-2}$$

$$a_7 = \frac{\Delta V_7}{2\tau} = \frac{2,1}{0,2} = 10,5m \, s^{-2}$$

$$a_{10} = \frac{\Delta V_{10}}{2\tau} = \frac{0,7}{0,2} = 3,5m \, s^{-2}$$

 $1Cm \rightarrow 5 \text{ mS}^{-2}$ نمثل شعاع التسارع بالسلم التالى:

جدول ملخص:

المواضع M _i	M ₂	M_3	M ₄	M_5	M_6	M ₇	M ₈	M_9	M ₁₀	M ₁₁
Vi(m/s) السرعة	1,96		2,20		1,64		1,46	1,93		2,26
طویلة شعاع تغیر السرعة $\Delta V_i (m/s)$		1,3				2,1			0,7	
$a_i(m/s^2)$ التسارع		6,5				10,5			3,5	

4- ما هي مميزات أشعة التسارع؟ .

الحامل و الجهة هما نفسهما حامل و جهة شعاع التغير في السرعة $\overline{\Delta V}$ (في اتجاه تقعر المسار).

5- ما هي القوى الخارجية التي تؤثر على الكرية في الموضع M_7 ؛ اختر سلما مناسبا لتمثيلها .

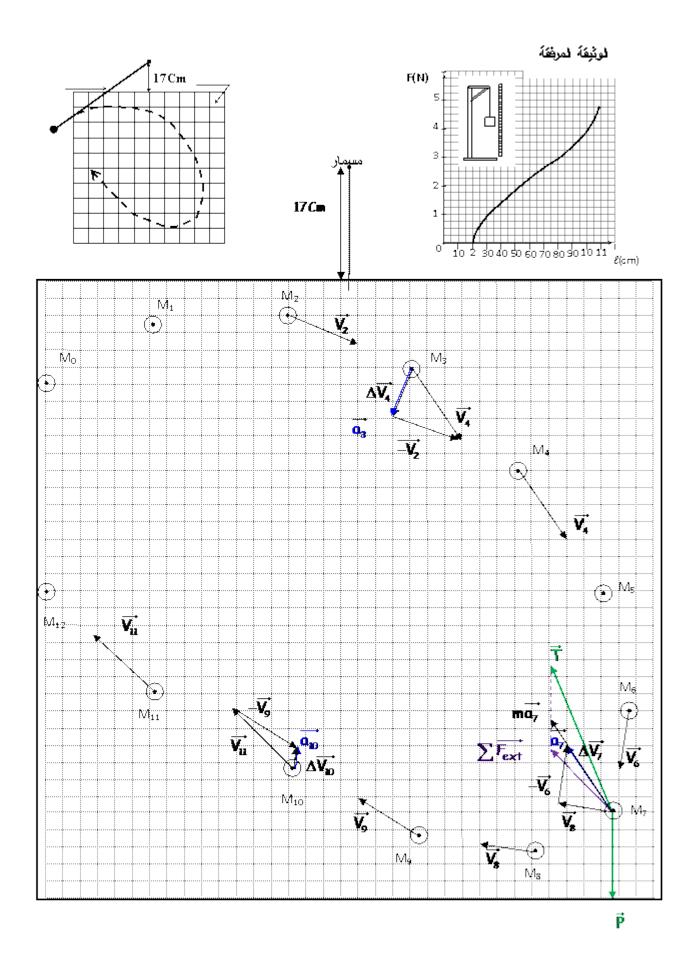
$$\overrightarrow{F}_{T/C} = \overrightarrow{P}$$
 الثقل: - قوة جذب الأرض للكرية أي الثقل

$$P = m.g = 228 \times 10^{-3} \times 9,81 = 2,24N$$
 طوبلتها:

 $\vec{F}_{F/C} = \vec{T}$: فعل جذب المطاط للكرية أي توتر الخيط

$$\ell = \frac{18,35 \times 5,7}{1} = 104,59 \; Cm$$
 ومنه: $\begin{cases} 1 \; cm & \to 5,7 \; cm \\ 18,35 \; cm & \to \ell \end{cases}$:نحسب أولا طول الخيط المطاطي:

$$T=4,2N$$
 : نجد $T=f\left(L
ight)$ بالإسقاط على البيان


 $1Cm \rightarrow 1N$: نقوم بتمثیل هذه القوی بسلم رسم

 $m \vec{a}$ و الشعاعي محصلة القوى الخارجية $\sum F_{ext}$ قارن بين شعاعي محصلة القوى الخارجية

$$ma_7 = 0,228 \times 10,5 = 3,024N$$
 : نحسب طويلة الشعاع $m\vec{a}$ فنجد -

$$\|\Sigma \overrightarrow{F_{ext}}\| = 2,4 \times 1 = 2,4N$$
 : فنجد $\Sigma \overrightarrow{F_{ext}}$ فنجد الشعاع $\Sigma \overrightarrow{F_{ext}}$

 $\Sigma \overrightarrow{F_{ext}} = m \overrightarrow{a}$: في حدود أخطاء التجربة نلاحظ أن الشعاعان $\Sigma \overrightarrow{F_{ext}}$ و $\Sigma \overrightarrow{F_{ext}}$ متقايسان و منطبقان ومنه

