البطاقة التربوية

المستوى: الثانية علوم تجريبية ، رياضى ، تقنى رياضى

المجال: الطاقة

رقم المذكرة: الوحدة: الطاقة الكامنة

الأسئلة الأساسية:

- ما مدلول الطاقة الكامنة الثقالية ؟
- ما هي عبارة الطاقة الكامنة الثقالية؟ و بماذا تتعلق؟
 - متى يخزن النابض المرن طاقة و ماذا تسمى؟
 - ما هي عبارة الطاقة الكامنة المرونية ؟
 - ما هي عبارة الطاقة الكامنة الفتلية؟

مؤشرات الكفاءة

- يعبر ويحسب الطاقة الكامنة لجسم صلب في تأثير متبادل مع الأرض و/أو نابض.
- يستعمل مبدأ انحفاظ الطاقة لتحديد ارتفاع جسم صلب و/أو تشوه نابض.
- يعبر ويحسب الطاقة الكامنة لقضيب في تأثير متبادل مع سلك فتل.

- الطاقة الكامنة الثقالية لجسم في تأثير متبادل مع الأرض: $E_{pp} = mgz$
- $E_{pe} = \frac{1}{2}kx^2$ الطاقة الكامنة المرونية لنابض حلزوني
 - $E_p = rac{1}{2} C lpha^2$ الطاقة الكامنة المرونية لنواس فتل

أمثلة للنشاطات

- دراسة حركة قذيفة في حالة إهمال الاحتكاكات مع الهواء.
- دراسة حركة جسم صلب مجرور من طرف نابض معاير
 - دراسة حركة نواس فتل ذي سلك فتل معاير مسبقا.

<u>التقويم:</u> حل بعض التمارين المقترحة

الوسائل المستعملة و الطرائق

- تجهيز السقوط الحر.
 - نابض مرن.
 - نواس فتل.

المراجع

- -الكتاب المدرسى.
 - أقراص CD

- الأنترنت

النقد الذاتي

الطاقات الكامنة

1- الطاقة الكامنة الثقالية لجسم في تأثير متبادل مع الأرض:

1-1 مدلول الطاقة الكامنة الثقالية:

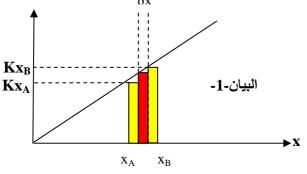
نترك جسما يسقط من النقطة A نحو النقطة B من سطح الأرض حيث AB=z فكلما كانت A أبعد عن $\, {f B} \,$ كلما كانت الطاقة الحركية للجسم أكبر عند وصوله إلى $\, {f B} \,$. هذه الطاقة الحركية لم تكن سوى طاقة مخزنة فيه تسمى الطاقة الكامنة الثقالية

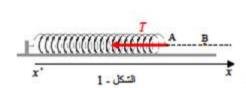
عند انتقال جسم من الموضع A نحو الموضع B بسرعة ثابتة أي $V_A = V_B$ فإنه عند الصعود و بتطبيق مبدأ انحفاظ الطاقة فإن

 \mathbf{A}

B—

$$\mathbf{E}_{\text{C}(B)}$$
- $\mathbf{E}_{\text{C}(A)} = \mathbf{W}_{\text{AB}}(\vec{P}) + \mathbf{W}_{\text{AB}}(\vec{F})$ كن $\mathbf{V}_{\text{A}} = \mathbf{V}_{\text{B}}$ ومنه $\mathbf{V}_{\text{A}} = \mathbf{V}_{\text{B}}$ لكن $\mathbf{W}_{\text{AB}}(\vec{F}) = -\mathbf{W}_{\text{AB}}(\vec{P}) = -\left(-\mathbf{m}\,\mathbf{g}\,(\,\mathbf{z}_{\text{B}}\,_{\text{-}}\,\mathbf{z}_{\text{A}})\right)$ أي $\mathbf{W}_{\text{AB}}(\,\vec{F}\,) = -\mathbf{W}_{\text{AB}}(\vec{P}) = -\left(-\mathbf{m}\,\mathbf{g}\,(\,\mathbf{z}_{\text{B}}\,_{\text{-}}\,\mathbf{z}_{\text{A}})\right)$ ومنه $\mathbf{W}_{\text{AB}}(\,\vec{F}\,) = \mathbf{m}\mathbf{g}\mathbf{z}_{\text{B}}\,_{\text{-}}\,\mathbf{m}\mathbf{g}\mathbf{z}_{\text{A}}$ نسمي $\mathbf{m}\mathbf{g}\mathbf{z}_{\text{B}}$ و $\mathbf{m}\mathbf{g}\mathbf{z}_{\text{B}}$ الطاقة الكامنة الثقالية للجسم في النقطتين \mathbf{A} و \mathbf{B} على الترتيب ونكتب $\mathbf{W}_{\text{AB}}(\,\vec{F}\,) = \mathbf{E}_{\text{PPB}}\,_{\text{-}}\,_{\text{E}}$

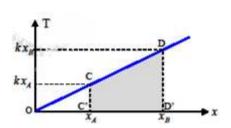

كل جسم كتلته m موجود على ارتفاع z عن سطح الأرض يملك طاقة كامنة ثقالية : $E_{pp} = mgz$ $E_{pp}(J)$, m(kg), g(N/kg), z(m) حيث:


ملاحظة

الطاقة الكامنة الثقالية تتعلق بالارتفاع z وهذا الأخير يحدد في مرجع مختار نعتبر عنده الارتفاع يساوي الصفر نسميه المستوى المرجعى للطاقة الكامنة الثقالية ومنه الطاقة الكامنة الثقالية تتعلق بالمرجع المختار أي معرفة بتقريب ثابت.

2- الطاقة الكامنة المرونية لنابض حلزونى: 2-1عمل قوة توتر النابض

 $T=K_X$ عندما نسحب أو نضغط طرف نابض تنشا فیه قوة $ar{T}$ تدعی قوة توتر النابض وهی قوة شدتها غیر ثابتة حیث $\delta W=T.\delta x$ عمل هذه القوة اذن هو في هذه الحالة مجموع الأعمال العنصرية δW حيث العمل العنصري يساوي. حيث $\delta_{\rm X}$ عبارة عن انتقال عنصري (انتقال صغير جدا) T



المطبقة على طرف نابض عندما تنتقل استطالته من $_{
m X_A}$ نحو $_{
m X_B}$ يحسب بطريقة بيانية . $_{
m X_{AB}}ig(ar{
m T}ig)$ العمل العنصري أيمثّل بيانيا مساحة المستطيل الذي طوله K_X وعرضه δ_X (الملون بالأحمر في البيان-1-). العمل من الفاصلة X=0 الى الفاصلة x يصبح مجموع المستطيلات اي مساحة مثلث قاعدته X وارتفاعه Kx ومنه يصبح العمل

$$\left|\mathbf{W}_{AB}\left(\vec{\mathbf{T}}\right)\right| = \frac{\mathbf{K}\mathbf{x}.\mathbf{x}}{2} = \frac{1}{2}\mathbf{K}\mathbf{x}^{2}$$

ومنه فإن عمل قوة التوتر عند الانتقال من النقطة A الى النقطة B هي مساحة شبه منحرف في البيان-2-

$$\left| \mathbf{W}_{AB} \left(\vec{\mathbf{T}} \right) \right| = \frac{\mathbf{K} \mathbf{x}_{B} \cdot \mathbf{x}_{B}}{2} - \frac{\mathbf{K} \mathbf{x}_{A} \cdot \mathbf{x}_{A}}{2} = \frac{1}{2} \mathbf{K} \left(\mathbf{x}_{B}^{2} - \mathbf{x}_{A}^{2} \right)$$

البيان-2-

2-2 عبارة الطاقة الكامنة المرونية:

$$W_{AB}(\vec{T}) = -\frac{1}{2}K(x_B^2 - x_A^2) = \frac{1}{2}Kx_A^2 - \frac{1}{2}Kx_B^2$$

من عبارة العمل السابقة نجد أن

نسمي $\frac{1}{2}$ $\frac{1}{2}$ و $\frac{1}{2}$ $\frac{1}{2}$ على الترتيب الطاقتين الكامنتين المرونيتين في النابض عند الفاصلتين $\frac{1}{2}$ و ونكتب

$$\mathbf{E}_{\mathrm{Pe}} = \frac{1}{2} \mathbf{K} \mathbf{x}^2$$

N/m بالمتر K، M بالمتر X بالجول ا E_{Pe}

2- 3 التغيرفي الطاقة الكامنة المرونية:

$$W_{AB}ig(ec{T}ig) = rac{1}{2}Kx_A^2 - rac{1}{2}Kx_B^2 = E_{PeA} - E_{Peb}$$
 مما سبق یمکن کتابهٔ

$$W_{AB}(\vec{T}) = -(E_{PeB} - E_{PeA})$$
 اُي : ومنه يصبح

$$\Delta \mathbf{E}_{\mathrm{Pe}} = -\mathbf{W}_{\mathrm{AB}} \left(\vec{\mathbf{T}} \right)$$

3- الطاقة الكامنة الفتلية:

 ${f E}_{
m Pe}=rac{1}{2}{f C}\;{f heta}^2\;\;$ من الدراسة العملية عبارة الطاقة الكامنة المرونية الفتلية لنابض حلزوني هي

حيث C ثابت فتل النابض الحلزوني و θ زاوية الدوران

 $rad = \theta$ و J/rad^2 و C