متوسطة مجاهري عبدالله ينارو

من اعداد الاستاذ: ولادقدور احمد

وزارة التربية الوطنية

مسابقة على اساس الاختبارات للالتحاق برتبة أستاذ التعليم الثانوي بعنوان 2017

المدة: 3ساعات

جمعها لكم الاستاذ: ولادقدور أحمد

اختبار في: الاختصاص (العلوم الفيزيائية)

التمرين الاول: (06 نقاط) تمرين حول المتابعة الزمنية للتحول الكميائي

النوع الكيميائي: 2- كلور 2- مثيل بروبان يتميه حسب المعادلة التالية:

 $(CH_3)_3C-C1 + 2 H_2O = (CH_3)_3C-OH + H_3O^+_{(aq)} + Cl^-_{(aq)}$

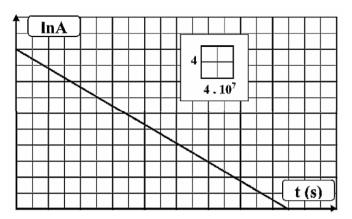
نتابع التطور الزمني لهذا التحول بطريقة قياس الناقلية النوعية . لذا ندخل في بيشر $V_1=20~\text{mL}$ من محلول $V_1=20~\text{mL}$ مثيل بروبان تركيزه المولي : $C_1=0.10~\text{mol/L}$ و مزيج يتكون من (ماء + cacétone) حجمه $V_1=0.10~\text{mol/L}$ على النتائج التالية : $V_2=80~\text{mL}$

t(s)	0	30	60	80	100	120	150	200
σ(S/m)	0	0,246	0,412	0,502	0,577	0,627	0,688	0,760
x (mmol)								

- 1- اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية النوعية.
 - 2- شكل جدول تقدم التفاعل.
- $\sigma = 426 \, \mathrm{x}$. للتفاعل هي : σ بدلالة التقدم X للتفاعل هي : σ
 - 4- شكل جدول يعطي قيمة التقدم x للتفاعل بدلالة الزمن.
 - $t=200~{
 m s}$. بين ذلك . $t=200~{
 m s}$
 - x = f(t) أرسم البيان -6
 - t = 50 s عند اللحظة x = f(t) . x = f(t) .
 - قيمة زمن نصف التفاعل.

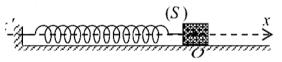
 $\lambda(\text{Cl}^-)$ ، $\lambda(\text{H}_3\text{O}^+)$ ، $\lambda(\text{H}_3\text{O}^+)$ ، $\lambda(\text{Cl}^-)$ ، $\lambda(\text{Cl}^-)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{H}_3\text{O}^+)$. $\lambda(\text{H}_3\text{O}^+)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{Cl}^-)$. $\lambda(\text{H}_3\text{O}^+)$. $\lambda(\text{H}_3\text{O}^$

التمرين الثانى: (07 نقاط) تمرين حول مبدأ انحفاظ الطاقة


 $m(_2^4{\rm He})=4.00150{\rm u}$ ، $m(_{84}^{210}{\rm Po})=209.98286{\rm u}$ ، $m(_{84}^{206}{\rm Pb})=205.97445{\rm u}$: $m(_{84}^{210}{\rm Po})=209.98286{\rm u}$ ، $m(_{84}^{206}{\rm Pb})=205.97445{\rm u}$: $m(_{84}^{210}{\rm Pb})=205.97445{\rm u}$: $m(_{84}^{210$

1- يصدر البولونيوم 210 ($^{210}_{82}$ Po) جسيمات α ، يعطي نواة إبن من الرصاص 206 ($^{206}_{82}$ Pb) ، يرافق التفاعل إصدار إشعاع كهرومغناطيسي γ .

- أ- أكتب المعادلة النووية المعبرة عن التحول التلقائي الحادث للبولونيوم .
- ب- أحسب بالميغا إلكترون فولط (MeV) الطاقة المحررة من هذا التفاعل.
- جـ سرعة النواة الابن منعدمة تقريبا ، إذا كانت طاقة الاشعاع γ المنبعث هي 2.20 MeV . أوجد :
 - الطاقة الحركية للجسيم α .
 - سرعة انبعاث الجسيم α من نواة البولونيوم 210 في التفاعل النووي السابق .
 - التالي : $\ln A = f(t)$ التالي : $\ln A$ التالي :

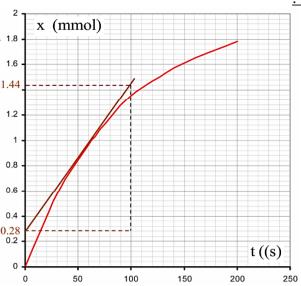

أ- استنتج من البيان:

- قيمة ثابت النشاط الإشعاعي λ للبولونيوم.
- عدد الأنوية N_0 في العينة عند اللحظة t=0 ، ثم أوجد قيمة m_0 مقدرة بالميكرو غرام m_0 .
- ب- عرف نصف حياة t_{1/2} العنصر المشع ثم أحسبه بالنسبة للبولونيوم .
- جـ أوجد قيمة A_0 النشاط عند اللحظة t=0 بطريقتين مختلفتين .

التمرين الثالث: (07 نقاط) تمرين حول الاهتزازات الحرة لجملة ميكانيكية

نثبت أفقيا نابض مرن حلقاته غير متلاصقة ثابت مرونته K = 100N/m وبطرفه الحر نثبت جسم صلب كتلته (t=0) نزيح الجسم عن عن وضع التوازن بمقدار $(x_m = +5Cm)$ ونتركه عند اللحظة (t=0) دون سرعة ابتدائية علما أن جميع الإحتكاكات مهملة.

- $(+x_m)$ مثل القوى المؤثرة على الكرية عند الفاصلة $(+x_m)$ ثم حدد تلك القوة المسؤولة عن الحركة
- 2- هل سيكون نمط الإهتزاز حرة متخامدة ؟ برر إجابتك.
- x = f(t) أكتب المعادلة التفاضلية للحركة ثم أكتب المعادلة الزمنية للحركة x = f(t)
 - a=g(t) والتسارع الزمنية لكل من السرعة v=f(t) والتسارع -4
 - a=g(t) ، v=h(t) ثم x=f(t) مثل المخطاطات -5
 - 6- أحسب قيمة قوة الإرجاع عند المرور بالمطال الأعظمي الموجب.


انتهى الموضوع الاول بالتوفيق للجميع

لا تنسونا من خالص دعائكم

جمعها ونظمها لكم الاستاذ ولادقدور احمد

العلامة		عناصر الاجابة						
مجزأ مجمو								
ع	ة							
		• حل التمرين الاول: (06 نقاط) 1- يمكن متابعة التحول عن طريق الناقلية لأن في المزيج (الوسط التفاعلي) توجد الشوارد 'C1' ، H ₃ O' ، ونحن نعلم أن الشوارد الموجبة و السالبة هي المسؤولة عن الناقلية الكهربائية في المحاليل . 2- جدول التقدم :						
		x=0						
		$\sigma = \lambda(H_3O^+) [H_3O^+] + \lambda(Cl^-) [Cl^-]$ $\sigma = \lambda(H_3O^+) \frac{n(H_3O^+)}{V_S} + \lambda(Cl^-) \frac{n(Cl^-)}{V_S}$						
		$n(H_3O^+) = x$ $n(Cl^-) = x$						
		ومنه يصبح: $\sigma = \lambda(H_3O^+) \frac{x}{V_S} + \lambda(Cl^-) \frac{x}{V_S}$ $\sigma = \frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S} x$ $\sigma = \frac{35.0 \cdot 10^{-3} + 7.6 \cdot 10^{-3}}{(20 + 80) \cdot 10^{-6}} x$ $\sigma = 426 x$						
		نذكر أنه في حساب التاقلية يقدر الحجم بـ m^3 . m^3 . m^3 . m^3 بدلالة الزمن : m^3						
		$\frac{: t = 200 \text{ s}}{x_{(200s)}} = \frac{\text{licelled}}{x_{(200s)}} = \frac{\text{licelled}}{x_{(200s)}} = \frac{\text{licelled}}{x_{(200s)}} = \frac{\text{licelled}}{x_{(200s)}} = \frac{\text{licelled}}{x_{(200s)}} = \frac{\text{licelled}}{x_{(200s)}} = \frac{x_f}{x_{(200s)}} = \frac{x_f}{x_$						

x = f(t) المنحنى البيانى: a = f(t)

t = 50 s عند اللحظة t = 50 s

من البيان (x(t) و باعتبار tanα ميل المنحنى عند اللحظة t يمكن كتابة:

$$\tan\alpha = \frac{\mathrm{d}x}{\mathrm{d}t} \quad \tag{1}$$

و لدينا حسب تعريف سرعة التفاعل:

$$v = \frac{dx}{dt} \qquad (2)$$

من العلاقتين (1) ، (2) يكون:

 $v = tan\alpha$

$$\tan \alpha = \frac{1.44 \cdot 10^{-3} - 0.28 \cdot 10^{-3}}{100 - 0} = 1.16 \cdot 10^{-5} \rightarrow v = 1.16 \cdot 10^{-5} \text{ mol/s}$$

زمن نصف التفاعل

رَ من نصف التفاعل هو الزمن اللازم لبلوغ نصف التقدم النهائي:

$$t = t_{1/2} \rightarrow x = \frac{x_f}{2} = \frac{2.10^{-3}}{2} = 10^{-3} \text{ mol}$$

. $t_{1/2} = 62 \ s$: بالإسقاط في البيان و بالاستعانة بالسلم نجد

 (Cl^-) ، $\lambda(H_3O^+)$ ، اثبات أنه بمعرفة قيمة (Cl^-) ، (H_3O^+) ، (Cl^-) ، (Cl

$$\sigma = \frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S} x$$

عند نهاية التفاعل:

$$x = x_f \rightarrow \sigma = \sigma_f$$

و عليه يمكن كتابة:

$$\sigma_f = \frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S} x_f$$

بقسمة عبارة σ على $\sigma_{\rm f}$ نجد :

$$\frac{\sigma}{\sigma_{\rm f}} = \frac{\frac{\lambda({\rm H_3O^+}) + \lambda({\rm Cl^-})}{{\rm V_S}}{\rm x}}{\frac{\lambda({\rm H_3O^+}) + \lambda({\rm Cl^-})}{{\rm V_S}}{\rm x}_{\rm f}} = \frac{{\rm x}}{{\rm x}_{\rm f}} \rightarrow \sigma = \frac{\sigma_{\rm f}}{\sigma} {\rm x}$$

. $\lambda(Cl^{-})$ ، $\lambda(H_{3}O^{+})$. و منه يمكن إيجاد العبارة σ بدلالة x بمعرفة σ_{f} من دون الاستعانة ب

1- أ- معادلة التفاعل:

$$^{210}_{84}$$
Po $\rightarrow ^{206}_{84}$ Pb + $^{4}_{2}$ He + γ

ب- الطاقة المحررة من التفاعل:

$$E_{lib} = (m(Po) - m(Pb) - m(He)) c^{2}$$

 $E_{lib} = (209.98286 - 205.97445 - 4.00150) \cdot 1.66 \cdot 10^{-27} (3 \cdot 10^{8})$

 $E_{lib} = 1.03 \cdot 10^{-12} \text{ J} = 6.45 \text{ MeV}$

2-أ- الطاقة الحركية للجسيم α: من مبدأ انحفاظ الطاقة:

$$\begin{split} E_{\text{تيانية}} + E_{\text{تيده}} - E_{\text{تيده}} &= E_{\text{take}} \\ m(\text{Po}) \ C^2 - 0 - E_{\gamma} &= m(\text{Pb}) \ C^2 + m(\text{He}) \ C^2 + E_{C} \end{split}$$

$$\underbrace{m(Po) \ C^2 - m(Pb) \ C^2 - m(He) \ C^2}_{=} = E_C + E_{\gamma}$$

$$\begin{split} E_{lib} &= E_C + E_{\gamma} \ \longrightarrow \ E_C = E_{lib} \text{ - } E_{\gamma} \\ E_C &= 6.45 - 2.20 = 4.25 \ MeV \end{split}$$

$$E_{C} = \frac{1}{2} \text{ mv}^{2} \rightarrow v = \sqrt{\frac{2 E_{C}}{m}}$$

$$v = \sqrt{\frac{2 \cdot 4.25 \cdot 1.6 \cdot 10^{-13} (\text{J})}{4.00150 \cdot 1.66 \cdot 10^{-27} (\text{kg})}} = 1.43 \cdot 10^{7} \text{ m/s}$$

3- أ- عبارة (N(t بدلالة N(t عبارة

 $N = N_0 e^{-\lambda t}$

 $: N_0 \cdot \lambda$ بدلالة الم المراد الم

$$A = \lambda N \ \rightarrow A = \lambda \ N_0 e^{-\lambda t}$$

 $\ln A = \ln(\lambda N_0 e^{-\lambda t})$

 $\ln A = \ln(\lambda N_0) + \ln(e^{-\lambda t})$

 $lnA = ln(\lambda N_0) - \lambda t$

 $\ln A = -\lambda t + \ln(\lambda N_0)$

<u>4</u>- أ- قيمتي λ ، N₀ : من البيان :

lnA = at + b

بالمطابقة مع العلاقة النظرية الأخيرة $\ln A = -\lambda t + \ln(\lambda N_0)$ يكون :

$$-\lambda = a \rightarrow \lambda = -a$$

من البيان:

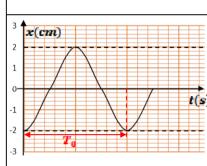
■
$$a = -\frac{20}{8.5 \times 4.10^7} = -5.88.10^{-8}$$
 $\rightarrow \lambda = -(-5.88.10^{-8}) = 5.88.10^{-8} \text{ s}^{-1}$

•
$$b = 20 \rightarrow N_0 = \frac{e^{20}}{\lambda} = \frac{e^{20}}{5.88 \cdot 10^{-8}} = 8.25 \cdot 10^{15}$$

- قيمة<u> m</u>0

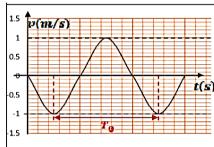
$$\frac{N_0}{N_A} = \frac{m_0}{M} \rightarrow m_0 = \frac{N_0 M}{N_A}$$

 $m_0 = \frac{8.25 \cdot 10^{15} \cdot 210}{6.02 \cdot 10^{23}} = 2.82 \cdot 10^{-6} \text{ g} = 2.88 \cdot 10^{-6} \text{ g} = 2.88 \mu \text{ g}$ ب- تعريف زمن نصف العمر و حسابه : - زمن نصف العمر هو الزمن اللازم لتفكك نصف عدد الأنوية . $t_{1/2} = \frac{\ln 2}{\lambda}$ $t_{1/2} = \frac{\ln 2}{5.88 \cdot 10^{-8}} = 1.18.10^7 \text{ s}$ جـ قيمة A_0 بطريقتين : الطريقة الأولى : $A_0 = \lambda N_0$ $A_0 = 5.88 \cdot 10^{-8} \cdot 8.25 \cdot 10^{15} = 4.85 \cdot 10^8 \text{ Bq}$ الطريقة الثانية: من البيان: $t = 0 \rightarrow \ln A = \ln A_0 = 20 \rightarrow e^{\ln A_0} = e^{20}$ $A_0 = e^{20} = 4.85 \cdot 10^8 \text{ Bq}$ حل التمرين الثالث: 1- ثمثيل القوى موضح على الشكل. القوة المسؤولة عن الحركة هي قوة الإرجاع لأنها تعمل على إعادة الجسم إلى F = -K.x(t)وضع توازنه و إتجاهها يكون دوما نحو موضع التوازن (O). 2- بمأن الإحتكاكات مهملة فإن نمط $\sum \overrightarrow{F_{ext}} = m \, \overrightarrow{a_G}$: بتطبيق قانون نيوتن الثاني على الجسم $\vec{P} + \vec{R} + \vec{F} = m \cdot \vec{a}$ 0+0-Kx=ma نجد: OX وبالاسقاط على المحور $m.\frac{d^2x}{dt^2} + Kx = 0$: وعليه يمكننا كتابتها بالشكل $-k.x = m.\frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$:بالقسمة على **m** نجد $x(t) = X \cos(\omega_0 t + \varphi)$ وهي معادلة تفاضلية من الدرجة الثانية بالنسبة لx تقبل حل من الشكل: $X = +X_M = 5Cm$ قيمتها $\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{100}{0.25}} = 20$ عبالتعویض نجد $\omega_0 = \sqrt{\frac{k}{m}}$: بإعتبار الشرط الإبتدائي الموضح في نص التمرين (عند اللحظة (t=0) نزيح الجسم عن عن وضع التوازن بمقدار $x(0) = X_m \cdot \cos(0 + \varphi_0)$: بالتعويض اللحظة t=0 في حل المعادلة التفاضلية نجد $(x(0) = X_m - \cos(0 + \varphi_0))$ $x_m = x_m \cdot \cos \varphi_0$ وعليه: $\varphi_0 = 0$ زن: $\cos \varphi_0 = 1$ x(t) = 5.Cos20t.....Cm: x = f(t) المعادلة الزمنية للحركة $x(t) = 5 \times 10^{-2} Cos 20t....m$

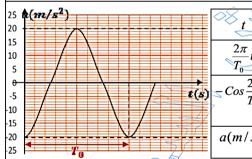

و عليه
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$
:

باشتقاق العبارة الزمنية للسرعة نجد:

 $a(t) = -5.\pi \times 0, 1.\pi Cos(5\pi.t + \pi).....m/s^2$
 $a(t) = -0, 5.\pi^2 Cos(5\pi.t + \pi).....m/s^2$
 $a(t) = -5.Cos(5\pi.t + \pi).....m/s^2$


$$v = \frac{dx(t)}{dt}$$
: -4
: عليه بإشتقاق حل المعادلة التفاضلية نجد $v(t) = -5\pi \times 2.10^{-2} \sin(5\pi t + \pi).....m/s$
 $v(t) = -0.1\pi \sin(5\pi t + \pi).....m/s$

$$a = g(t)$$
 ، $v = h(t)$ ثم $x = f(t)$ تمثل المخطاطات -5


	t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
	$\left(\frac{2\pi}{T_0}t + \pi\right)$	0	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$	3π
)	$Cos\left(\frac{2\pi}{T_0}t + \pi\right)$	-1	0	+1	0	4 1
	x(cm)	-2	0	+2	0	-2

x = f(t):
$x(t) = 2.Cos\left(\frac{2\pi}{T_0}t + \pi\right)Cm$
(T_0) حيث T_0 يمثل الدور
الذاتي الداتي

	t	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_{0}
	$\left(\frac{2\pi}{T_0}t\right)$	VO)	$\frac{\pi}{2}$	7π	$\frac{3\pi}{2}$	2π
1	$-Sin\left(\frac{2\pi}{T_0}t\right)$	0	71	0	+1	0
	v(m/s)	0	-1	0	+1	0

$v = \frac{dx(t)}{dt}$:
$v(t) = -1\sin 20tm$
$v(t) = -1\sin\left(\frac{2\pi}{T_0}t\right)m/s$

$\langle \rangle t$	0	$\frac{T_0}{4}$	$\frac{T_0}{2}$	$\frac{3T_0}{4}$	T_0
$\frac{2\pi}{T_0}t$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$Cos \frac{2\pi}{T_0} t$	-1	0	+1	0	-1
$a(m/s^2)$	-20	0	+20	0	-20

$a = \frac{dv}{dt} =$	$\frac{d^2x}{d^2x}$
dt	dt^2
a(t) = -20Cos20t	$.m/s^2$

$$a(t) = -20\cos\left(\frac{2\pi}{T_0}t\right)..m/s^2$$

وبما أن المطال أعظمي موجب فإن F=ma :02 F=ma :02 وبما أن المطال أعظمي $a=-a_{\max}=-20$ أي أن: $x(t)=+X_{M}=5\times 10^{-2}m$ نجد: F=ma=0,25(-20)=-5N

ويما أن المطال أعظمي
$$F = -K.x(t)$$
 :01 موجب فإن $x(t) = +X_M = 5 \times 10^{-2} m$ وعليه نجد: $F = -K.X_M = -100 \times 5 \times 10^{-2} = -5N$

نتهى الحل